
Query by Graph

Bachelor Thesis
for the attainment of the academic degree

Bachelor of Science (B.Sc.)

in Computer Science

Friedrich Schiller University Jena

Faculty for Mathematics and Computer Science

submitted by

Friedrich Answin Daniel Motz
born on 15 July 2001 in Chemnitz, Germany

assessed by

Prof. Dr. Clemens Beckstein
M. Sc. Johannes Mitschunas

Jena, 12 January 2025

Abstract

This thesis introduces a Visual Query Builder for
SPARQL queries, reducing the effort required to query
Wikibase systems. At its core is a Visual Query Graph,
which abstracts technical complexities of reified strucF
tures, such as Wikibase qualifiers, by leveraging a new
labelled hyperFedge. Building on this concept, the newly
implemented program features a robust, modular Rust
backend and a Web frontend. Early testing by digital
humanities students with FactGrid demonstrated the
program’s usefulness for constructing SPARQL queries.

Contents
Preface .. 7
1 Introduction .. 8

1.1 Problem ... 9
1.2 Proposal .. 10

2 Preliminaries .. 13
2.1 Resource Description Framework .. 13
2.2 Data Model in Wikibase .. 15

3 Querying ... 18
3.1 SPARQL Protocol and RDF Query Language ... 18
3.2 Qualifiers .. 20

4 Mapping .. 22
4.1 Visual Query Graphs and Basic Graph Patterns ... 22
4.2 Specification ... 24
4.3 Implementation ... 24

5 Discussion ... 28
5.1 Evaluation .. 28
5.2 Future Prospects and Limitations ... 29

Bibliography .. 31
Abbreviations .. 32
Appendix .. 33
Index of Figures .. 33
Index of Tables .. 33
Index of Listings ... 33
6. Declaration of Academic Integrity .. 35

Preface
This bachelor thesis represents the culmination of a journey fuelled by my
commitment to making complex things more accessible. Along the way, I have
been fortunate to receive invaluable support, guidance, and inspiration from
several remarkable individuals.

First and foremost, I owe the genesis of this work to Olaf Simons. His blog
post and the initiative FactGrid sparked my interest in exploring Visual Query
Graphs and Wikibase, laying the foundation for this thesis.

I thank Lucas Werkmeister, whose expertise in the technical intricacies of
Wikibase was indispensable. His guidance helped me navigate complexities I
could not have overcome alone.

Special thanks go to Patrick Stahl for his contributions to implementing UI
features. Your technical skills enriched the practical aspects of this work.

I owe the programs early public exposure to Clemens Beck. Thank you for
testing the early preview of the program in your seminar and for providing
crucial support and manpower to accelerate its development.

My deep gratitude goes to Clemens Beckstein and Johannes Mitschunas for
their exceptional mentorship. Their wisdom, encouragement, and thoughtful
feedback were instrumental in shaping this project and pushing it to its full
potential.

I also wish to acknowledge the many friends, colleagues, and mentors whose
support, guidance, and generosity of spirit have enriched this undertaking in
countless ways.

But without you, Mom and Dad, I would never have had the opportunity to
enjoy writing this thesis and to encounter so many interesting people and
challenges. My deepest gratitude goes to you.

Each of you has played a vital role in bringing this thesis to fruition. Your
support has made this journey not only intellectually rewarding but also
personally meaningful.

To all of you, I extend my heartfelt gratitude.

1 Introduction

Over its thousands of years in existence, humanity has built an infrastructure
for knowledge. It started out with stone tablets, evolved to handFwritten papyrus
books, libraries, the printing press and recently culminated in computer and the
internet. Instead of using a library and asking a librarian, we usually consult
“the internet” using a search engine – even for small questions. Now, in order to
answer a question, the search engine needs to be able to treat the contents of a
website in a semantically correct way, just like a human would. This is achieved
using i. e. network analysis and techniques of natural language processing.
However, what if the contents of websites could be semantically annotated by
their creators?

This question lead to the inception of the Wikidata¹ initiative, among others.
Their idea is to rewrite Wikipedia articles into very simple assertions using
a specified vocabulary. These assertions consist of a subject, predicate and an
object, in analogy to sentence structures in linguistics, where subjects and
objects can refer to objects of our intuition and predicates define how they are
related. These assertions are also referred to as triples. Another benefit of these
triples is their ability to be represented as a graph (see Figure 1), where nodes
represent subjects and objects (or e. g. Wikipedia articles), and edges represent
predicates, also called properties or relationships. This triple structure allows
to easily visualise the database’s entries.

Goethe (subject) ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
educated at (predicate)

Leipzig (object) (A.1)

Goethe ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
place of birth

Frankfurt am Main (A.2)

Figure 1: A graphical visualisation of the triples (Goethe, educated at, Leipzig) and
(Goethe, place of birth, Frankfurt am Main) as a graph. Gothe is subject to both relationF

ships, while edges represent predicates pointing to the the respective cities as objects.

Wikidata contains a very big set of such triples, posing the opportunity, that
it could be used like a database and queried for information, just like classical
relational databases. Such databases can be implemented using a framework

¹https://www.wikidata.org

8

https://www.wikidata.org

called Resource Description Framework (RDF) and are called triplestore or
RDF graph. A resource can be any object of our intuition and these resources
can be described using the syntax RDF offers. The vocabulary used to describe
the resources, is specified or chosen by the users. Triplestores can be advanF
tageous when the information collected is incomplete or might be enhanced
later on. Applications using triplestores are inherently designed to handle the
absence of data, as these systems lack a rigid schema. In contrast, relational
databases enforce a strict schema that ensures every entry adheres to a predeF
fined structure, enabling applications to consistently rely on wellForganised and
uniformly structured information.

The maximally flexible data model is what lead triplestores to become popular
in the digital humanities. An initiative called FactGrid² hosts a triplestore
specifically designed for historians, enabling them to make the data from their
research publicly accessible. This poses the potential, that a user with knowlF
edge of the specified vocabulary and conventions of the database, could get
information about historical facts by writing an adequate query to the database.
Furthermore, inferencing information about historical facts could be made a
matter of, again, writing an adequate query.

1.1 Problem

Making use of a triplestore in a broader audience poses the challenge, that the
technicalities of the database are exposed to its user. To populate and query the
database, the users have to attend to the conventions of the vocabulary and the
database engineers. The formalisation step is therefore being put into the hands
of e. g. historians. Secondly, to adequately query a database, the user is forced
to use the query language SPARQL, which requires technical knowledge.

Figure 2: The process of getting a result from an RDF triplestore.

For example, a researcher might ask: “What professions did members of sociF
eties dedicated to advancements in the natural sciences in Jena hold?” There
are many ways to interpret this question: Does the question refer to registered
clubs, meaning a legal entity or does a regular’s table in a pub count? What
does the term profession refer to? Is it the current occupation or the trained
profession? Secondly, before starting to write a SPARQL query, the next step

²https://factgrid.de

INTRODUCTION 9

https://factgrid.de

is to ‘preFformalise’ the question using the concise ‘subject, predicate, object’
syntax, to adequately captures the interpretation’s essence. This requires familF
iarity with the database’s modelling conventions. For example, a researcher
could query for entities classified as clubs and ensure that these entities are also
associated with ‘natural sciences’ through the predicate ‘interested in’. AlterF
natively, things related to ‘Natural research association’ through the predicate
‘instance of’ could be queried. Both options seem just, but in practice, only one
returns results.

However, these initiatives want to reach a broader user base than the one likely
to engage given these hurdles. It is unreasonable to expect users to navigate
these steps without substantial training, a clear understanding of typical modF
elling practices, and inFdepth knowledge of SPARQL language features.

1 PREFIX fg: <https://database.factgrid.de/entity/> SPARQL
2 PREFIX fgt: <https://database.factgrid.de/prop/direct/>
3 SELECT DISTINCT ?careerStatement WHERE {
4 ?society fgt:P2 fg:Q266832 .
5 ?society fgt:P83 fg:Q10391 .
6 ?people fgt:P91 ?society .
7 ?people fgt:P165 ?careerStatement .
8 }

Listing 1: A possible SPARQL query to the professions of members of societies for natural
sciences in Jena from the database FactGrid.

1.2 Proposal

This work aims to lay the fundamentals for a program, which allows to build
queries to an RDF triplestore using visual representation. The idea is, that since
the contents of the RDF triplestore can be visualised as a graph, so could the query
[1], [2]. Instead of writing a query in the database’s query language SPARQL,
the user employs a visual query builder, which in turn generates the equivalent
query.

Figure 3: Methodology pipeline: How to get from a question in natural language to the result
in an RDF database.

10 INTRODUCTION

Figure 4: A screenshot of the Visual Query Graph which is generated to the query in Listing 1.
Variables are shown in violet and things in light blue. Green nodes show which variables are

part of the result set.

Creating a Visual Query Graph is similar to sketching: the user outlines the
desired database structure and fills in variables for the desired results. The
sketched graph is then automatically converted into a SPARQL query that
adheres to all syntactical requirements. A result is retrieved from an RDF
triplestore by finding the same graph structure as specified by the query. A
variable will match any value in the RDF graph.

Figure 5: An exemplary RDF Graph against which the query from Figure 4 or equivalently
Listing 1 is run.

The results of typical SPARQL queries on an RDF graph are presented as a
table, with each column representing a requested variable. For this example, the
table will have one column which includes all career statements associated with
Goethe and Böber {Author, Head of State, Director, Explorer, Professor}.

This work aims to closely integrate with the triplestore software suite called

INTRODUCTION 11

Wikibase³, which is widely adopted⁴. Wikibase offers many very useful conF
structs, which, by their nature, require some technicalities to be represented
using the triple syntax, e. g. further specifications of a property (which in WikF
ibase are called qualifiers). This work demonstrates that, beyond the standard
triple syntax, such complex constructs can be represented as intuitive structures
and queried using a Visual Query Graph, following [2]. To achieve this, it
introduces the conventions of data modelling in Wikibase and explains their
mapping to RDF syntax.

Query by Graph cannot fully eliminate the need for users to learn the
conventions of an RDF triplestore. For instance, determining which subjects
are available and what to expect is entirely dependent on the database’s users
and engineers, as is the naming of properties. However, with Query by Graph,
querying an RDF graph becomes as simple as drawing a suitable stencil that
mirrors the RDF graph’s structure. The desired pattern is sketched, while any
undefined elements are left as variables to be resolved during the query process.
Using the editor’s search fields, users can quickly adjust the meanings of nodes
and edges, creating a workflow that feels more intuitive and similar to sketching
a chain of thought.

Section 2 provides the necessary preliminaries, including the fundamentals of
RDF, SPARQL, and the data model used in Wikibase. Section 3 delves into
the principles of querying RDF graphs and the specific challenges posed by
Wikibase’s advanced constructs. Section 4 introduces the concept of Visual
Query Graphs and how they are mapped to SPARQL queries. It furthermore
discusses the implementation of the tool Query by Graph, which incorporates
and realises a significant portion of the features conceptualised in this thesis.
Section 5 discusses the implications, limitations, and potential extensions of the
proposed approach.

³https://wikiba.se
⁴e. g. Wikidata and FactGrid

12 INTRODUCTION

https://wikiba.se

2 Preliminaries

To define the tasks of Query by Graph, it is essential to discuss Wikibase’s data
modelling conventions, the formal definitions of Wikibase’s special constructs,
their mapping to the Resource Description Framework (RDF), the RDF itself
and the syntax of the query language for RDF, SPARQL. The most commonly
used SPARQL queries for retrieving information are SPARQLFSELECT queries,
which are the primary focus of this work. SPARQLFSELECT queries function
like stencils that describe a triple pattern, which is applied across an RDF
graph until a matching pattern is found. For each match in the RDF graph, the
corresponding variable assignments are returned as a result set. The idea is
that the Visual Query Graph will represent the same stencil as the SPARQLF
SELECT query.

Certain patterns in the RDF graph of Wikibase exist solely for technical reasons
and are not intuitive to users without an understanding of the underlying
necessities. For example, this includes relationships involving multiple objects.
These patterns are limited in scope and are defined within the Wikibase data
model, providing an opportunity to develop an intuitive representation for
them in the Visual Query Graph. During query generation from the Visual
Query Graph, these intuitive representations are translated into technically
accurate constructs, ensuring they can be queried successfully.

2.1 Resource Description Framework

To introduce the Wikibase data model and its mapping to the Resource DescripF
tion Framework (RDF), it is essential to first understand the terminology of RDF.

2.1.1 Internationalised Resource Identifier

Internationalised Resource Identifiers (IRIs) [RFC3987] are
a superset of Uniform Resource Identifiers (URIs)
[RFC3986], for example http://database.factgrid.de/entity/Q409 and
https://database.factgrid.de/prop/direct/P160 . Their purpose is to unamF
biguously refer to a resource across all triplestores (or the WWW). The
resource an IRI points at is called referent [3].

Remark. IRIs can largely be treated as URIs, as they are interchangeable
through conversion. Their primary purpose is to identify the entity being
referenced within a specific triplestore or Wikibase instance. Since the
technical details are not directly relevant to this work, I will refer readers to the
referenced RFCs for further information.

2.1.2 Prefixing

RDF allows to define a prefix, which acts as an abbreviation of an IRI. For
example, let wd be a prefix with the value http://www.wikidata.org/entity/ .

13

https://www.ietf.org/rfc/rfc3987.txt
https://www.ietf.org/rfc/rfc3986.txt

Then, the IRI http://www.wikidata.org/entity/Q5879 can be rewritten using
this prefix as wd:Q5879 . The part after the colon is called local name and
is essentially a string restricted to alphanumerical characters [3]. The term
“prefix” will also be used to describe specific prefixes in the Wikibase data
model: Each Wikibase instance defines a set of prefixes and data modelling
conventions around them.

2.1.3 Literals

A literal in an RDF graph can be used to express values such as strings, dates
and numbers. It essentially consists of two elements⁵:
1. a lexical form, which is a Unicode string,
2. a data type IRI, which defines the mapping from the lexical form to the

literal value in the user representation.

2.1.4 Blank nodes

RDF specifies blank nodes, which do not have an IRI nor a literal assigned to
them. Most common syntax expresses blank nodes with a “blank IRI” denoted
by an underscore followed by a local name, e. g. _:implicit1 . The specification
[3] and the current version of its successor [4] do not comment on the structure
of a blank node: “Otherwise, the set of possible blank nodes is arbitrary.” [3].
It only specifies, that the set of blank nodes is disjunct from all literals
and IRIs. It furthermore specifies, that: “Blank nodes in graph patterns [for
SPARQL queries] act as variables, not as references to specific blank nodes
in the data being queried” [5]. This means, that variables can be used to query
blank nodes and are treated the same way by the query engine.

2.1.5 RDF Triple and RDF Graph

To establish a concise notation for subsequent definitions, this work introduces
specific sets to be used throughout. The set of all IRIs is represented by 𝐼 , the
set of all blank nodes by 𝐵, and the set of literals by 𝐿. The set of all valid RDF
terms is defined as 𝑇 ≔ 𝐼 ∪ 𝐿 ∪ 𝐵.

Definition 2.1. Let 𝒔 ∈ 𝑰 ∪ 𝑩 be a subject, 𝒑 ∈ 𝑰 a predicate and 𝒐 ∈ 𝑻 an
object.

Then, following [3], an RDF triple or simply a triple, is defined as

(𝒔, 𝒑, 𝒐). (B)

Definition 2.2. An RDF graph is a set of RDF triples. An RDF triple is said to
be asserted in an RDF graph if it is an element of the RDF graph [4].

⁵The specifications and the new proposal for RDF allow for more elements for languageF
tagging [3], [4], however, they are not relevant to this work.

14 PRELIMINARIES

2.2 Data Model in Wikibase

Wikibase is one of the most widely used softwares for community knowledge
bases, with the most prominent instance, Wikidata⁶, storing ~115 million data
items. Wikibase has its own internal structure and conventions for naming
and modelling entities and concepts. These internals are in turn mapped to an
expression in RDF syntax [6]. This invertible mapping permits the use of RDF
terminology to refer to structures within Wikibase and most notably the use of
the SPARQL query language for information retrieval. This specific data model of
Wikibase is particularly noteworthy due to its widespread use and substantial
influence on other initiatives, driven by its sheer scale. For example, DBpedia
will make use of Wikidata resources [7].

In Wikibase, a thing is referred to as an item and assigned a unique Q-Number
within a Wikibase instance. Any predicate is called property and assigned a
unique P-Number. A statement in Wikibase puts an item in relation to another
item using a property.

Example 2.3. Suppose a user wants to enhance an entry in Wikidata for a
person called “Johann Wolfgang von Goethe”. Goethe is modelled as an item
with the QFnumber Q5879 and wants to add the statement, that Goethe was
“educated at” (PFnumber P69) the “University of Leipzig” (QFnumber Q154804).
Using the user interface, the user edits the entry for Goethe and fills the fields
“property” and “object” with P69 and Q154804 . The triple representation in an
RDF graph would be very similar:

Johann Wolfgang von Goethe ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
educated at

University of Leipzig, or(C.1)

Q5879 ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
P69

Q154804. (C.2)

Most realFworld relationships might present to be more complex than someF
thing one would want to model in a single triple. For example, one may want
to express that “Goethe” was educated at the “University of Leipzig” from
3 October 1765 to 28 August 1768. Wikibase represents it as a hierarchical
structure, with “educated at” as the primary property and the others arranged
beneath it. In the Wikibase context, a statement specifying another relationship
is called a qualifier.

Figure 6: Presentation of an qualified relationship in the software Wikibase.

⁶http://wikidata.org — an initiative for a free community knowledge base

PRELIMINARIES 15

http://wikidata.org

One possibility is to let relationships have more than two operands, i. e. increase
the arity by one for each additional parameter. “Educated at” would then be
called “educated at (⋅) from (⋅) to (⋅)”. Another way using the triple syntax is
to create an implicit object, that assists in modelling the relationship using an
implicit or blank node to describe a new concept; a human might be inclined
to give it a name, e. g. “educated at for a certain time”. This act is also called
reification (objectification of a fact). The following triples exemplify such an
implicit relationship, called a qualified statement:

Goethe ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
educated at

Uni Leipzig, (D.1)

Goethe ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
educated at

Implicit1, (D.2)

Implicit1 ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
location

Uni Leipzig, (D.3)

Implicit1 ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
started at

3.10.1765, (D.4)

Implicit1 ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
ended at

28.08.1768. (D.5)

The statements of Eq. D.4 and Eq. D.5 are called qualifiers.

Figure 7: Graphical visualisation of a qualified statement using natural language descriptors.

Wikibase instances define IRIFprefixes for things of the same kind. This allows
to think of them as namespaces for categories defined within the Wikibase
data model. Since this work treats the set of all possible Wikibase instances
where the IRIs use different domain names from e. g. wikidata.org , they can be
thought of as variables for the instanceFspecific prefix. For convenience, these
variables will be denoted by the prefix names followed by a colon (wd: , p: ,
pq: , wdt: and so on) defined by Wikidata (see Listing 2). For the matters of
this work, only IRIs which can be written as the concatenation of the prefix
with a local name (an alphanumerical string) are considered to be an element
of the namespace, e. g. http://www.wikidata.org/prop/P1234 is an element of

16 PRELIMINARIES

the namespace p: but http://www.wikidata.org/prop/something/else/P1234
is not an element. Furthermore, the mapping of the Wikibase data model to RDF
syntax specifies that these namespaces can only be used in triples (or edges, for
that matter) that connect specific namespaces. The use of these namespaces is
therefore restricted. For example, an edge with a referent in the namespace p:
can only have sources in the namespace wd: and only targets in the namespace
wds: . Figure 8 is an illustration taken from the Wikibase documentation on
RDF mapping, which gives an overview of these restrictions.

1 PREFIX p: <http://www.wikidata.org/prop/> SPARQL
2 PREFIX pq: <http://www.wikidata.org/prop/qualifier/>
3 PREFIX pqv: <http://www.wikidata.org/prop/qualifier/value/>
4 PREFIX ps: <http://www.wikidata.org/prop/statement/>
5 PREFIX wd: <http://www.wikidata.org/entity/>
6 PREFIX wds: <http://www.wikidata.org/entity/statement/>
7 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
8 PREFIX wdv: <http://www.wikidata.org/value/>

Listing 2: An excerpt of customary IRI prefixes defined by Wikidata.

wd:Q1234

simple
value

wds:12345678 wdv:v123456

wdref:r12345

Item
Statement Value node

Reference node

wiki URL

ps:

wdt:

p: psv:

wikibase:quantityAmount
wikibase:timeValue

…
pq:

pqv:prov:wasDerivedFromschema:about

prv:

pr:

Figure 8: An overview of restrictions for the use of namespaces in Wikibase [8]. The labels
of the nodes and edges act as placeholders for specific IRIs, whose referents are within the

namespace indicated by the label.

For further use, a subset of these namespaces will be denoted by abbreviations.
Let Σ be a valid alphabet for local names and Σ∗ its Kleene closure. Let
𝑓𝒑, 𝑓𝒒, 𝑓𝒔 ∈ 𝐼 be distinct IRIs. In analogy to the Wikibase data model, 𝑓𝒑 will
denote the prefix for the namespace for properties p: , 𝑓𝒒 for qualifying propF
erties pq: and 𝑓𝒔 for statements ps: .

PRELIMINARIES 17

3 Querying

With the structure of the data to be queried now clearly defined, the next
step involves formulating a corresponding SPARQL query and creating a query
yielding the same results using a Visual Query Graph.

Constructing a query for an RDF graph can be viewed as creating a subgraph
— a set of RDF triples. In addition to valid RDF terms such as IRIs, blank nodes,
and literals, now variables can be inserted at any position in the triple, instead
of an RDF term. Each variable is distinct from all others and can be placed in
multiple positions within the query graph. The database’s query engine will try
to find the same structure in the RDF graph and returns the RDF Terms which
overlapped with a variable. This matching is essentially the process of querying
an RDF graph. Among other features, such stencils can be written using the
RDF query language SPARQL, where this query graph or stencil is referred to
as Basic Graph Pattern.

3.1 SPARQL Protocol and RDF Query Language

The acronym SPARQL is recursive and stands for SPARQL Protocol And RDF
Query Language and is part of the Resource Description Framework recomF
mendation. It is considered to be a graph based query language. The definitions
of the following section are an excerpt from the Formal Definition of the SPARQL
query language [9]. All relevant aspects of the formal definition are clarified in
this work. Readers interested in further details are encouraged to consult the
documentation directly.

This work focuses on a specific subset of SPARQL queries, specifically SPARQLF
SELECT queries. SELECT queries can include additional components, such as
value constraints, which restrict permissible variable assignments in the results.
For instance, a constraint ensuring that e. g. an event occurred before 1900
would be expressed as FILTER(?year < 1900) . Such language features are not
yet specified in the Visual Query Graph.

Other types of SPARQL queries also exist, such as ASK and DESCRIBE , which
differ in the structures they return. These SPARQL query types and also the
data manipulation language for triplestores will not be dealt with in this work.
They are detailed in the SPARQL specification [5].

For further use, the set of all variables is from now on denoted by 𝑉 . Following
the syntax of SPARQL, variables in examples will be denoted with a leading
question mark ? followed by an alphanumerical word.

Definition 3.1. A Basic Graph Pattern (BGP) is a subset of SPARQL triple
patterns [9]

(𝑇 ∪ 𝑉) × (𝐼 ∪ 𝑉) × (𝑇 ∪ 𝑉). (E)

18

Example 3.2. A valid Basic Graph Pattern following the query in Listing 1 and
visualised in Figure 4 would be

{(?society, instance-of, natural research association),
(?society, located-in, Jena),
(?people, member-of, ?society),
(?people, career-statement, ?careerStatement)}. (F)

Definition 3.3. In essence, a Graph Pattern can contain multiple and optional
Basic Graph Patterns. This work concentrates on queries which only contain
one Basic Graph Pattern.

Definition 3.4. A SPARQL-SELECT query is a special SPARQL query, which
consists of a Graph Pattern, a target RDF graph and a result form. The soFcalled
result form specifies how the result of a SPARQL query looks like. In the case
of SELECT queries it is a projection to the valid variable assignments for the
given Graph Pattern. Alternative result forms include ASK and DESCRIBE . The
return tuple is determined by the query’s projection statement, which specifies
the subset of variables from the query to be included. The query results can be
ordered using solution modifiers e. g. DISTINCT , LIMIT or ORDER (in analogy
to SQL).

Remark. Since a basic graph pattern can have any RDF Term as a subject, this
implies, that a SPARQL query can query for a triple, which has a literal as its
subject. An RDF graph however cannot have a triple with a literal as a subject.

Writing SPARQL queries is pretty straightFforward: The wanted structure is
expressed in terms of the query language, and the unknown parts are replaced
by variables. Say the user wants to know which universities Goethe went to.
The matching query would look like Listing 3. IRIs are enclosed within angle
brackets.

1 PREFIX wd: <http://www.wikidata.org/entity/> # for brevity SPARQL
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/> # for brevity
3
4 SELECT # result form
5 ?institution # projection statement
6 WHERE
7 { # graph pattern, in this case a basic graph pattern ...
8 wd:Q5879 wdt:P69 ?institution . # ... with one entry
9 # Johann Wolfgang von Goethe -- [educated at] -> Variable
10 }

Listing 3: A SPARQL query to determine which educational institutions Goethe visited.
Currently, the valid results are wd:Q154804 (University of Leipzig) and wd:Q157575
(University of Strasbourg). The structural components from Definition 3.4 are highlighted

with comments.

In order to query a BGP containing a blank node, a query has to specify a
variable at the blank node’s position. There are other syntactical structures to

QUERYING 19

express blank nodes, which are however semantically equal to using a variable
[9].

3.2 Qualifiers

The term qualifier is not clearly defined in the documentation around Wikibase
[10], [11]. An achievement of this work is the dissemination of the terminology,
in order to create adequate queries for these structures. Listing 4 shows an
exemplary query for qualifiers. By incorporating the namespace conventions of
Wikibase as shown in Figure 8, it becomes evident that the variable ?implicit1
matches a node within the wds: namespace. The values of these nodes are
however irrelevant for querying and therefore to this work. Therefore, the
choice was made to ignore this implementation detail in the following definiF
tions, and treat them as blank nodes. As already mentioned in Section 2.1.4,
querying using blank nodes and variables yields the same results.

1 SELECT ?startDate WHERE { SPARQL
2 wd:Q5879 p:P69 _:implicit1 . # this and the following line

3 _:implicit1 ps:P69 wd:Q154804 . # specify the narrow qualified
statement

4 _:implicit1 pq:P580 ?startDate . # and this queries the
qualifier's referent

5 }

Listing 4: A query to fetch the start date of Goethe’s education at the University of Leipzig
using the prefixes posted in Listing 2.

Obeying the Wikibase data model and its namespace conventions, a qualifier
or qualifier edge is an edge pointing from an element of the namespace wds:
to an element of any namespace using a predicate in the pq: namespace. The
value of a qualifier is the target node of this edge.

Definition 3.5. Let Σ be a valid alphabet for local names and Σ∗ its Kleene
closure. Any RDF triple with a predicate of the form 𝑓𝑝𝑢 with 𝑢 ∈ Σ∗ is a
qualifier.

Definition 3.6. Let Σ be a valid alphabet for local names and Σ∗ its Kleene
closure. Let 𝑠 ∈ 𝐼 be a subject, 𝑏 ∈ 𝐵 a blank node, 𝑜, 𝑜′ ∈ 𝐼 ∪ 𝐿 objects, which
are all elements of 𝐺. Then, any subgraph 𝐺QSn ⊂ 𝐺 with

𝐺QSn ≔ {(𝑠, 𝑓𝑝𝑢, 𝑏), (𝑏, 𝑓𝑠𝑢, 𝑜)} (G)

is called Qualified Statement in the narrow sense, and 𝑜′ is called Qualifier
Value, where 𝑢, 𝑢′ ∈ Σ∗. Furthermore 𝐺𝑄 ⊂ 𝐺,

𝐺𝑄 ≔ {(𝑏, 𝑓𝑞𝑢′, 𝑜′)}, (H)

20 QUERYING

is called qualifier to the Qualified Statement in the narrower sense. A Qualified
Statement in the broader sense is the union of all qualified statements in the
narrower sense to a specific blank node.

Figure 9: A visualisation of a qualified statement in the broader sense with two qualifiers using
the terms introduced in Definition 3.6 and 𝑢, 𝑢′, 𝑢″ are local names. The red box indicates
the qualified relationship, the green box one qualifier and the violet box the other qualifier.

QUERYING 21

4 Mapping

To establish a semanticFpreserving mapping between Visual Query Graphs
and SPARQLFSELECT queries — meaning it yields the same results in both
formalisms – a formal specification for Visual Query Graphs is introduced.
Following this, the transformation function from a Visual Query Graph to
SPARQL is defined. Lastly, the implementation of these functions is analysed
and discussed.

4.1 Visual Query Graphs and Basic Graph Patterns

The so far introduced structures include Basic Graph Patterns in SPARQL
queries and RDF triples. While Basic Graph Patterns are used to describe
stencils to be queried against RDF triples, the goal of Visual Query Graphs is
to eliminate the need to manually model reified structures using blank nodes.
Other literature [1] uses the term Visual Query Graph to refer to a Basic Graph
Pattern without Blank Nodes. This work uses the same term to define a graph
with multiFedges, which consist of the same triples as the Basic Graph Pattern
would, but with the exception, that any qualifier structures are replaced with
a multiFedge, including all statements of the qualified statement in the broader
sense.

In order to build a Visual Query Graph, we need special edges which involve
all nodes of a qualified statement in the broader sense. This can be done using
a hypergraph. A qualifier will be a hyperedge consisting between at least three
nodes using at least two edges. All Basic Graph Patterns which are not qualified
statements in the broader sense will be copied to the Visual Query Graph
without any changes. All qualified statements will be exchanged for a hyperF
edge, where the blank node is removed and the edges will be rebuilt using one
directed hyperFedge. The visualisation of the hyperFedge in the VQG can be
seen in Figure 10.

Figure 10: Visual Query Graph with two Qualifiers. The equivalent SPARQL query should
return two qualifier values. The qualifiers are highlighted using a violet and a green box.

Definition 4.1. Let 𝐺 = (𝑋, 𝐸) be a hypergraph. A hyperedge (𝑈, 𝑉) ∈ 𝐸 is
defined as a 2Ftuple, where 𝑈 ∈ 𝑋 are the source nodes and 𝑉 ∈ 𝑋 are the

22

target nodes. A labelled hyperedge (𝑠, 𝑉) is a simplified hyperedge, between
a source node 𝑛 and a set of labelled target nodes (𝑝, 𝑜) ∈ 𝑉 with label 𝑝 and
target node 𝑜.

Definition 4.2. Let Σ be a valid alphabet for local names and Σ∗ its Kleene
closure. Let 𝐺 ∈ (𝑇 ∪ 𝑉) × (𝐼 ∪ 𝑉) × (𝑇 ∪ 𝑉) be a Basic Graph Pattern. FurF
thermore, let 𝑁 ⊂ 𝐼 ∪ 𝐿 ∪ 𝑉 be a set of nodes, 𝐸 ⊂ 𝑁 × (𝐼 ∪ 𝑉) × 𝑁 a set
of edges, and 𝐸𝑞 ⊂ 𝑁 × 𝒫({𝑓𝑠𝑢 | 𝑢 ∈ Σ∗} ∪ {𝑓𝑞𝑢 | 𝑢 ∈ Σ∗} × 𝑁) a set of
labelled hyperFedges for qualified statements, where 𝒫(𝑋) denotes the powerF
set of a set 𝑋. Then the corresponding Visual Query Graph 𝐺𝑞 = (𝑁, 𝐸, 𝐸𝑞)
is a special directed hypergraph to a Basic Graph Pattern 𝐺 and constructed as
follows:

1. Add all nodes the set of nodes 𝑁 of 𝐺𝑞 .

2. Copy all elements of 𝐺 to the the set 𝐸 of 𝐺𝑞 , but remove all Qualified
Statements.

3. For each Qualified Statement 𝐺QS in the broader sense in 𝐺, create one
labled hyperedge 𝑒𝑞 in 𝐸𝑞 as follows:
1. From the triples of the Qualified Statement in the narrower sense 𝑄QSn,

add a tuple which omits the blank node and goes to the object: 𝑄QSn ⊂
𝑄QS, 𝐺QSn = {(𝑠, 𝑓𝑝𝑢, 𝑏), (𝑏, 𝑓𝑠𝑢, 𝑜)}, 𝑢 ∈ Σ∗, 𝑜 ∈ 𝑁 . The labelled hyF
peredge 𝑒𝑞 is then (𝑠, {(𝑓𝑠𝑢, 𝑜)}) and

2. for each qualifier to 𝐺QS of the form (𝑏, 𝑓𝑞𝑢′, 𝑜′), 𝑢′ ∈ Σ∗, 𝑜′ ∈ 𝑁 add a
tuple (𝑓𝑞𝑢′, 𝑜′) to the targets.

Example 4.3. The Visual Query Graph 𝐺𝑞 = (𝑁, 𝐸, 𝐸𝑞) illustrated in FigF
ure 11 would have the following sets (for brevity, the prefix wd for the items
Q5879 and Q154804 are omitted):

𝑁 ≔ {(Q5879, Q154804, ?eduEnded, ?eduStarted)}, (I.1)
𝐸 ≔ {}, (I.2)

𝐸𝑞 ≔ {(Q5879, {(ps:P69, Q154804),

(pq:582, ?eduEnded),
(pq:580, ?eduStarted)}) (I.3)

Figure 11: Visual Query Graph with two qualifiers using the accurate Wikibase prefixes.

MAPPING 23

To construct a valid BGP from a VQG, all regular edges are copied, and for each
hyperedge the BGP receives at least three edges: first, the qualified statement
in the narrower sense is added, as an edge from the source of the hyperedge to
a newly inserted blank node. Second, for each of the hyperedge’s target tuples
𝑡, an edge in the BGP is added from the same blank node to node in 𝑡 using the
the label in 𝑡.

4.2 Specification

This section outlines how the Visual Query Graph and hyperedges can be built
using the visual query interface. Following [1], the VQG is constructed using
the Visual Query Language (VQL), consisting of four algebraic operators, which
will correspond to atomic user interactions in the user interface (see Table 1).

User Interaction

Adding a variable node

Adding a literal node

Adding a directed edge

Adding a qualifier to an edge

Table 1: Operations in the VQL

The purpose of the hyperedge in the VQG is to express the association between
the relationships recorded within it. When rendering the graph using the
display library, however, the edge between the subject and object should be
hierarchically emphasised, with qualifier edges subordinated, as illustrated in
Figure 11. Consequently, in the data structure of the VQG, a qualifier should be
considered as a property of the regular edge connecting two nodes. Therefore,
the addition of a qualifier is always in reference to an existing edge and will be
modelled as such.

Using this new VQG and VQL, we can now create an intuitive visualisation
(see Figure 10) as motivated by [2]. The mapping from Visual Query Graphs to
Basic Graph Patterns follows the definition of the construction, but with some
simplifications.

4.3 Implementation

The goal of this work is to create two program parts, the hope being that i. e.
the backend can be reused by other projects:
1. the visual query building interface (forthon called frontend) and
2. the translator between VQG and SPARQL (forthon called backend).

The most important aspects for the choice of software and UX design were
usability, maintainability and reusability. The aim is to lay the basis for a

24 MAPPING

software, which can be applied in dayFtoFday use as an “almostFnoFcode” query
builder.

4.3.1 Architecture

Given RDF’s predominant use in web contexts, opting for a web application
was a natural choice. The backend was designed to be both explainable and
traceable. While several functional programming languages are wellFsuited for
this purpose, Rust⁷ emerged as the preferred option due to its ability to compile
to WebAssembly⁸, enabling native execution in a browser.

The frontend was developed using TypeScript, Vite, Vue3, ReteJS, and TailF
windCSS, all licensed under the MIT license. Its purpose is to allow the user to
1. build a VQG, and edit it from the SPARQL code editor,
2. searching for items and properties in arbitrary Wikibase instances using the

API,
3. display metaFinformation on items and properties,
4. configure Wikibase data sources and
5. handle all data source specific tasks (such as enriching entities with inforF

mation from a the Wikibase API).

This approach presents a significant advantage over e. g. traditional serverF
client architectures by combining extensibility, efficiency, and formal precision.
Rust’s algebraic type system plays a central role in ensuring robustness, as it
enforces the consideration of all possible cases, leaving no room for omissions.
This guarantees a high level of reliability in the system’s design. Moreover,
since the entire computation occurs on the client side, the performance benefits
are substantial, with rapid execution speeds. The use of WebAssembly further
enhances this efficiency by providing a highly optimised runtime environment.
Additionally, the modular design of the architecture simplifies the process of
integrating new formats or types. By defining and handling these changes only
at the interface boundaries, the system avoids unintended side effects, ensuring
a predictable and maintainable implementation. This combination of features
makes the architecture both robust and adaptable to evolving requirements.

The Wikibase data sources are configured by the user and stored in the
browser’s local storage. Following the conventions of Wikibase, the choice was
made to only allow one prefix for items and one for properties. In the context of
Visual Query Graphs it only makes sense that the item prefixes point directly to
the item, e. g. wd for Wikidata, and the property prefixes to the property value,
e. g. wdt .

The backend is designed to parse SPARQL queries into Query Graphs and conF
vert them back. It utilises the spargebra ⁹ library for parsing SPARQL queries,
though this library is still under development. Verifying the correctness of the

⁷http://www.rustFlang.org
⁸http://webassembly.org
⁹https://docs.rs/spargebra/latest/spargebra/

MAPPING 25

http://www.rust-lang.org
http://webassembly.org
https://docs.rs/spargebra/latest/spargebra/

parser lies outside the scope of this work. Nevertheless, it was confirmed that
the parser produced correct results for randomly generated SPARQLFSELECT
queries with BGPs.

To ensure compatibility between the backend and frontend, both use the exact
same types with equivalent data types in their environments. This ensures the
correct exchange of data between both representations.

The VQG is exported in the form of an edge list from the frontend to the
backend. The elements of the edge list are triples, corresponding to BGPs, and
each entry of the triple is a literal, variable or IRI. The BGPs in turn are mapped
to a SPARQLFSELECT query with all variables from the VQG added to the
projection.

4.3.2 Visual Query Graphs in the Implementation

The following listing shows a UML diagram containing the key data types.
The class diagram is so complex because of the support for multiple Wikibase
instances, which comes with the necessity to store metaFinformation about the
entities in a Visual Query Graph.

The key challenge in mapping a VQG to a BGP is to insert the correct edges
for qualified statement in the broader sense. The frontend passes the qualifiers
“as is” to the backend, which uses the prefixes specified in the Wikibase data
source configuration to insert the adequate edges. This BGP is in turn used to
generate a SPARQLFSELECT query.

The inverse operation requires pattern matching for qualifiedFstatements in the
broader sense, which is also done in the backend. The instantiated objects are
passed to the frontend, which sets its current Visual Query Graph with the
incoming data and redraws the visualisation.

26 MAPPING

PREFIX
string iri
string abbreviation

WIKIBASEDATASOURCE
string name
PREFIX propertyPrefix
PREFIX itemPrefix
PREFIX qualifierPrefix
PREFIX statementPrefix
PREFIX propStatementPrefix
string[] preferredLanguages

LITERAL
string value
string datatype

ITEM PROPERTY
QUALIFIER[] qualifiers?

ENTITY
string id
string label
PREFIX prefix
WIKIBASEDATASOURCE dataSource

CONNECTION
PROPERTY property
ITEM source
ITEM|LITERAL target

QUALIFIER
PROPERTY property
ITEM target

1

*

2

*

*

1

1..2

*

0..1

*

1

*

1

*

Listing 5: Key Data Types for the translation between VQG and SPARQL.

MAPPING 27

5 Discussion

5.1 Evaluation

The development of Query by Graph represents a significant contribution to
enhancing the usability of Wikibase instances, particularly in the context of
digital humanities. This work will be part of the ongoing DFG Ffunded HisQu
project in collaboration with the MEPHisto group. Therefore, the focus in this
work lay on establishing a robust, extensible, and modular platform. During
this thesis, the tool received preliminary testing in a digital humanities seminar,
supported by Patrick Stahl’s contributions to the development of the user interF
face components. All changes to the code base with attribution are documented
in the repository’s version history. The program can be used in a web browser
and is accessible at https://quebyg.danielFmotz.de/ .

Central to this work is the precise analysis of Wikibase conventions and
the introduction of wellFdefined terminology, including the novel concepts of
QualifierFCentric Representations and HyperFEdges for Blank Nodes.

These novelties are an advantage over existing approaches, which also use
the term Visual Query Graph [1]. Existing documentation often lacks terminoF
logical clarity, complicating the onboarding process for new users. This work
addresses these gaps and systematically presents the equivalences between
Basic Graph Patterns and Visual Query Graphs in an accessible manner.

Queries involving qualifiers can easily fail due to minor syntactical errors
or wrong prefixes, which result in empty results without clear feedback. By
explicitly incorporating these RDF constructs into the Visual Query Graph, this
work mitigates these issues, thereby making the querying of qualifiers accesF
sible for many users in the first place.

The implementation of the proposed Visual Query Graph and Mapper called
Query by Graph, introduces an enhanced version of a visual query interface
compared to [1], [12] that prioritises userFfriendly design. The current imple,
mentation does not fully include qualified statements. The backend, implemented
in Rust running natively in the browser, delivers outstanding responsiveness
and robustness. Unlike existing tools using a graph representation [1], [12],
it supports the backwards translation of SPARQL queries into Visual Query
Graphs, enabling bidirectional interaction. This dual representation simplifies
query construction. Observing the stepFbyFstep construction of a Visual Query
Graph can serve as an effective aid in understanding and learning the SPARQL
syntax.

The tool also supports dynamic configuration and switching between multiple
Wikibase instances, enabling users to query multiple data sources seamlessly.

28

https://dfg.de
https://github.com/HerrMotz/bachelor-thesis
https://quebyg.daniel-motz.de/

Other approaches like RDF Explorer [1] can be adapted to different data sources
too, they require recompilation and source code modifications.

A preliminary user study with digital humanities students demonstrated that
the tool could be effectively employed with minimal training, a finding consisF
tent with prior research. The student’s task was to build queries given in natural
language and to test, whether they yielded the expected result. However,
further comprehensive studies are necessary to validate its longFterm usability
and effectiveness.

5.2 Future Prospects and Limitations

Future work will explore the integration of ontologyFdriven query snippets,
following [13]. Unlike [13], which mandates an ontology for every query,
Query by Graph allows users to derive query fragments directly from ontology
snippets, providing a more flexible and intuitive mechanism for constructing
complex queries.

Currently, Query by Graph supports only SPARQLFSELECT queries with a
single Basic Graph Pattern. Future enhancements could include the visualisaF
tion of optional graph patterns, value constraints (e. g., FILTER statements),
and support for “multiFedges” within Visual Query Graphs. For instance, multiF
edges could enable users to specify multiple valid properties between items,
simplifying the querying of ambiguous relationships (e. g., wdt:P802 “student”,
wdt:P1066 “student of”, and wdt:P69 “educated at”). While tools like [1] supF
port this functionality through FILTER and REGEX statements, the use of these
statements are less intuitive, just like reified structures require much technical
understanding.

Another planned enhancement is the inclusion of graphFexecution results
visualisation directly within the tool. Users would execute queries and display
the results as interactive graphs, further streamlining the query process.

The current implementation supports only string literals. There are plans to
introduce valueFrestricted fields in the User Interface for all XML Schema data
types. Additionally, other WikibaseFspecific features such as label inclusion in
queries remain areas for future development.

DISCUSSION 29

Feature Description Implementation Status

Drawing a VQG with variables and literals ✓

Searching for entities on multiple Wikibase
instances

✓

Creating SPARQLFSELECT queries from a
VQG

✓

Code editor for SPARQL queries ✓

Applying changes in the code editor to the
VQG

(✓)

Enriching unseen entities with metadata
from the Wikibase API

(✓)

Literals with standard RDF data types (string,
int, date, …)

(✓)

Use multiple Wikibase instances as data
sources

✓

MetaFInfo Panel ✓

Rendering qualifiers with the proposed visuF
alisation

✗

Value Constraints ✗

Result Modifiers (e. g. ORDER , LIMIT) ✗
Table 2: An overview of all features currently implemented comparing with other approaches.
“✓” means implemented and tested, “(✓)” means implemented but not bugFfree and “✗” means not implemented.

A full feature list can be found in the technical documentation of the repository.

30 DISCUSSION

Bibliography
[1] H. Vargas, C. BuilFAranda, A. Hogan, and C. López, ‘RDF Explorer: A Visual SPARQL

Query Builder’, in The Semantic Web – ISWC 2019, C. Ghidini, O. Hartig, M.
Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois, and F. Gandon, Eds.,
Springer International Publishing, 2019, pp. 647–663.

[2] O. Simons, ‘In einer Graphdatenbank müsste man eigentlich auch graphisch suchen
können’. Accessed: Oct. 01, 2024. [Online]. Available: https://blog.factgrid.de/archives/
2596

[3] O. Hartig, P.FA. Champin, G. Kellogg, and A. Seaborne, ‘RDF 1.1 Concepts and
Abstract Syntax’. Accessed: Dec. 06, 2024. [Online]. Available: https://www.w3.org/
TR/2014/RECFrdf11FconceptsF20140225/

[4] O. Hartig, P.FA. Champin, G. Kellogg, and A. Seaborne, ‘RDF 1.2 Concepts and
Abstract Syntax’. Accessed: Dec. 06, 2024. [Online]. Available: https://www.w3.org/
TR/2024/WDFrdf12FconceptsF20241121/

[5] W3C, ‘W3C SPARQL Language Specification’. Accessed: Nov. 03, 2024. [Online].
Available: https://www.w3.org/TR/rdfFsparqlFquery/

[6] ‘Wikibase RDF Mapping Article’. Accessed: Nov. 15, 2024. [Online]. Available:
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format

[7] J. Lehmann et al., ‘DBpedia F A largeFscale, multilingual knowledge base extracted
from Wikipedia’, Semantic Web, vol. 6, pp. 167–195, 2015, [Online]. Available: https://
api.semanticscholar.org/CorpusID:1181640

[8] M. F. Schönitzer, Wikibase RDF Mapping Graphic (CC BY 4.0; no changes). Accessed:
Nov. 15, 2024. [Online]. Available: https://commons.wikimedia.org/w/index.php?
curid=63880194

[9] W3C, ‘W3C SPARQL Formal Definition’. Accessed: Dec. 01, 2024. [Online]. Available:
https://www.w3.org/2001/sw/DataAccess/rq23/sparqlFdefns.html

[10] Wikibooks contributors, ‘SPARQL/WIKIDATA Qualifiers, References and Ranks’.
Accessed: Nov. 01, 2024. [Online]. Available: https://en.wikibooks.org/wiki/SPARQL/
WIKIDATA_Qualifiers,_References_and_Ranks

[11] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, and D. Vrandečić, ‘Introducing
Wikidata to the Linked Data Web’, in The Semantic Web , ISWC 2014, P. Mika, T.
Tudorache, A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić, P. Groth, N. Noy, K.
Janowicz, and C. Goble, Eds., Springer International Publishing, 2014, pp. 50–65.

[12] C. Yang, X. Wang, Q. Xu, and W. Li, ‘SPARQLVis: An Interactive Visualization Tool
for Knowledge Graphs’, in Web and Big Data, Y. Cai, Y. Ishikawa, and J. Xu, Eds.,
Springer International Publishing, 2018, pp. 471–474.

[13] T. Francart, ‘Sparnatural: A Visual Knowledge Graph Exploration Tool’, in The
Semantic Web: ESWC 2023 Satellite Events, C. Pesquita, H. SkafFMolli, V. Efthymiou, S.
Kirrane, A. Ngonga, D. Collarana, R. Cerqueira, M. Alam, C. Trojahn, and S. Hertling,
Eds., Springer Nature Switzerland, 2023, pp. 11–15.

31

https://blog.factgrid.de/archives/2596
https://blog.factgrid.de/archives/2596
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2024/WD-rdf12-concepts-20241121/
https://www.w3.org/TR/2024/WD-rdf12-concepts-20241121/
https://www.w3.org/TR/rdf-sparql-query/
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://commons.wikimedia.org/w/index.php?curid=63880194
https://commons.wikimedia.org/w/index.php?curid=63880194
https://www.w3.org/2001/sw/DataAccess/rq23/sparql-defns.html
https://en.wikibooks.org/wiki/SPARQL/WIKIDATA_Qualifiers,_References_and_Ranks
https://en.wikibooks.org/wiki/SPARQL/WIKIDATA_Qualifiers,_References_and_Ranks

Abbreviations
W3C.....................................World Wide Web Consortium (registered trademark)
RDF..Resource Description Framework
RDFS.............Resource Description Framework Schema (Ontology within RDF)
SPARQL...............SPARQL Protocol And RDF Query Language (see Section 3.1)
IRI.....................................Internationalised Resource Identifier (see Section 2.1.1)
BGP..Basic Graph Pattern (Definition 3.1)
OWL..Web Ontology Language
VQG..Visual Query Graph (see Definition 4.2)
VQL..Visual Query Language
WASM..Web Assembly
API...Application Programming Interface
WWW...World Wide Web

32

Appendix
Index of Figures
Figure 1: A graphical visualisation of
the triples (Goethe, educated at, Leipzig) and
(Goethe, place of birth, Frankfurt am Main) as a graph. Gothe is subject to
both relationships, while edges represent predicates pointing to the the respecF
tive cities as objects. .. 8
Figure 2: The process of getting a result from an RDF triplestore. 9
Figure 3: Methodology pipeline: How to get from a question in natural language
to the result in an RDF database. .. 10
Figure 4: A screenshot of the Visual Query Graph which is generated to the
query in Listing 1. Variables are shown in violet and things in light blue. Green
nodes show which variables are part of the result set. 11
Figure 5: An exemplary RDF Graph against which the query from Figure 4 or
equivalently Listing 1 is run. ... 11
Figure 6: Presentation of an qualified relationship in the software Wikibase. 15
Figure 7: Graphical visualisation of a qualified statement using natural language
descriptors. .. 16
Figure 8: An overview of restrictions for the use of namespaces in Wikibase [8].
The labels of the nodes and edges act as placeholders for specific IRIs, whose
referents are within the namespace indicated by the label. 17
Figure 9: A visualisation of a qualified statement in the broader sense with
two qualifiers using the terms introduced in Definition 3.6 and 𝑢, 𝑢′, 𝑢″ are
local names. The red box indicates the qualified relationship, the green box one
qualifier and the violet box the other qualifier. ... 21
Figure 10: Visual Query Graph with two Qualifiers. The equivalent SPARQL
query should return two qualifier values. The qualifiers are highlighted using
a violet and a green box. ... 22
Figure 11: Visual Query Graph with two qualifiers using the accurate Wikibase
prefixes. .. 23

Index of Tables
Table 1: Operations in the VQL .. 24
Table 2: An overview of all features currently implemented comparing with
other approaches.
“✓” means implemented and tested, “(✓)” means implemented but not bugFfree and “✗” means not

implemented. A full feature list can be found in the technical documentation of the repository. 30

Index of Listings
Listing 1: A possible SPARQL query to the professions of members of societies
for natural sciences in Jena from the database FactGrid. 10
Listing 2: An excerpt of customary IRI prefixes defined by Wikidata. 17
Listing 3: A SPARQL query to determine which educational institutions Goethe

33

visited. Currently, the valid results are wd:Q154804 (University of Leipzig)
and wd:Q157575 (University of Strasbourg). The structural components from
Definition 3.4 are highlighted with comments. .. 19
Listing 4: A query to fetch the start date of Goethe’s education at the University
of Leipzig using the prefixes posted in Listing 2. ... 20
Listing 5: Key Data Types for the translation between VQG and SPARQL. ... 27

Use of Generative AI
This bachelor thesis was written in assistance of the OpenAI large language
models GPTF4o and GPTFo1 preview. The large language models were used to
ease literature research and to point out stylistic, orthographical, grammatical
mistakes and to make formulation suggestions to the writer.

34

6. Declaration of Academic Integrity
1. I hereby confirm that this work — or in case of group work, the contribution

for which I am responsible and which I have clearly identified as such — is
my own work and that I have not used any sources or resources other than
those referenced.

I take responsibility for the quality of this text and its content and have
ensured that all information and arguments provided are substantiated with
or supported by appropriate academic sources. I have clearly identified and
fully referenced any material such as text passages, thoughts, concepts or
graphics that I have directly or indirectly copied from the work of others
or my own previous work. Except where stated otherwise by reference or
acknowledgement, the work presented is my own in terms of copyright.

2. I understand that this declaration also applies to generative AI tools which
cannot be cited (hereinafter referred to as “generative AI”).

I understand that the use of generative AI is not permitted unless the examF
iner has explicitly authorised its use (Declaration of Permitted Resources).
Where the use of generative AI was permitted, I confirm that I have only
used it as a resource and that this work is largely my own original work. I
take full responsibility for any AIFgenerated content I included in my work.

Where the use of generative AI was permitted to compose this work, I
have acknowledged its use in a separate appendix. This appendix includes
information about which AI tool was used or a detailed description of how
it was used in accordance with the requirements specified in the examiner's
Declaration of Permitted Resources. I have read and understood the requireF
ments contained therein and any use of generative AI in this work has been
acknowledged accordingly (e. g. type, purpose and scope as well as specific
instructions on how to acknowledge its use).

3. I also confirm that this work has not been previously submitted in an
identical or similar form to any other examination authority in Germany
or abroad, and that it has not been previously published in German or any
other language.

4. I am aware that any failure to observe the aforementioned points may lead
to the imposition of penalties in accordance with the relevant examination
regulations. In particular, this may include that my work will be classified as
deception and marked as failed. Repeated or severe attempts to deceive may
also lead to a temporary or permanent exclusion from further assessments
in my degree programme.

Place and date Signature

35

	Preface
	Introduction
	Problem
	Proposal

	Preliminaries
	Resource Description Framework
	Internationalised Resource Identifier
	Prefixing
	Literals
	Blank nodes
	RDF Triple and RDF Graph

	Data Model in Wikibase

	Querying
	SPARQL Protocol and RDF Query Language
	Qualifiers

	Mapping
	Visual Query Graphs and Basic Graph Patterns
	Specification
	Implementation
	Architecture
	Visual Query Graphs in the Implementation

	Discussion
	Evaluation
	Future Prospects and Limitations

	Bibliography
	Abbreviations
	Appendix
	Index of Figures
	Index of Tables
	Index of Listings
	Declaration of Academic Integrity

